

Biochemical Pharmacology 64 (2002) 125–135

Biochemical Pharmacology

Effects of (–)-nicotine and (–)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson's disease

Ramón Soto-Otero^{a,*}, Estefanía Méndez-Álvarez^a, Álvaro Hermida-Ameijeiras^a, Ana María López-Real^b, José Luis Labandeira-García^b

^aGrupo de Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco 1, E-15782 Santiago de Compostela, Spain

^bLaboratorio de Neuroanatomía y Neurología Experimental, Departamento de Ciencias Morfológicas, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco 1, E-15782 Santiago de Compostela, Spain

Received 21 February 2002; accepted 15 March 2002

Abstract

In view of the apparent controversial properties of (-)-nicotine (NIC) in relation to both oxidative stress and neuroprotection, we studied the effects of NIC on hydroxyl radical (${}^{\bullet}$ OH) formation, oxidative stress production by 6-hydroxydopamine (6-OHDA) autoxidation in the presence and absence of ascorbate, and 6-OHDA neurotoxicity. Both NIC and (-)-cotinine (COT) exhibited increased ${}^{\bullet}$ OH production during 6-OHDA autoxidation. Although the same effect was observed in ${}^{\bullet}$ OH generation by the Fenton reaction $(H_2O_2 + Fe^{2+})$, this reaction was completely prevented with the previous incubation of Fe^{2+} with NIC or COT. Furthermore, both NIC and COT demonstrated a capacity to be able to reduce the TBARS formation provoked in rat brain mitochondrial preparations by 6-OHDA autoxidation. This effect is assumed as a consequence of the action of NIC and COT on lipid peroxidation propagation. We treated with NIC (1 mg/kg, i.p.) two 6-OHDA-induced rat models of Parkinson's disease. However, only in one of these models did we obtain clear evidence of a neuroprotective effect of NIC on nigrostriatal terminals, as revealed by immunohistochemistry against tyrosine hydroxylase. Thus, the antioxidant properties of both NIC and COT in relation to the lipid peroxidation induced by 6-OHDA autoxidation, together with their reported capacity to prevent the Fenton reaction, probably by sequestration of Fe²⁺, may contribute to an understanding of its neuroprotective properties. In addition, the reported capacity of both NIC and COT to increase the production of ${}^{\bullet}$ OH by 6-OHDA autoxidation might help explain the controversial observation found under different experimental conditions. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: (-)-Nicotine; (-)-Cotinine; 6-Hydroxydopamine; Oxidative stress; Dopaminergic neurotoxicity; Parkinson's disease

1. Introduction

Parkinson's disease (PD) is a neurodegenerative disorder which primary neurological features include resting tremor, rigidity, and bradykinesia. The disease is characterized by a loss of dopaminergic neurons located in the pars

Abbreviations: PD, Parkinson's disease; 6-OHDA, 6-hydroxydopamine; pQ, p-quinone of 6-OHDA; •sQ, semiquinone radical of 6-OHDA; •OH, hydroxyl radical; NIC, (-)-nicotine; COT, (-)-cotinine; Asc, ascorbate; DHAsc, dehydroascorbate; CAT, catalase; THA, terephthalic acid; TBARS, thiobarbituric acid reactive substances; MDA, malondial-dehyde; KPBS-BSA, potassium phosphate-buffered saline containing bovine serum albumin; TH, tyrosine hydroxylase; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

compacta of the substantia nigra [1], which causes a profound dopamine depletion in the striatum [2]. This fact is responsible for most of the motor symptomatology of the disease. Although the cause of the cellular destruction in PD remains unclear, it is now often attributed to a variety of causes: the action of endogenous neurotoxins or xenobiotics which act on the mitochondrial respiratory chain by depleting the production of ATP; to the oxidative stress caused by an excessive production of free radicals or to an alteration in protective antioxidant systems. With regard to oxidative stress, several studies have evidenced certain biochemical changes in the brain of PD patients which appear to be a consequence of this phenomenon [3–5]. However, it is not yet clear whether oxidative stress is actually an etiological factor in PD or a secondary phenomenon which occurs subsequent to an alternate process.

 $^{^*}$ Corresponding author. Tel.: +34-981-563100ext12210; fax: +34-981-582642.

E-mail address: bnsoto@usc.es (R. Soto-Otero).

Several epidemiological studies have shown a reduction in the incidence of PD in smokers compared with nonsmokers [6–10]. This repeated finding has stimulated investigation into the mechanisms responsible for such a protective effect. (–)-Nicotine (NIC) is the major alkaloid present in Nicotiana tabacum and consequently an important constituent of cigarette smoke. The major route of NIC metabolism in humans involves C-oxidation by the isoenzyme P4502A6 to form (-)-cotinine (COT) [11], which is the primary metabolite of NIC into the brain [12]. In vivo and in vitro studies on the neuroprotective effects of NIC remain controversial: several in vivo experiments have reported antioxidant properties of NIC [13,14], which might explain the protective effects of smoking against the development of PD, while other studies have reported that NIC induces in vivo oxidative stress in different tissues [15,16]. Similarly, administration of NIC has been reported to reduce, or to enhance, or to have no influence upon nigrostriatal degeneration in animal models of PD [13,17– 19]. Thus, it could be possible that only NIC-independent mechanisms were responsible for the protective effects of smoking against PD [20-23].

$$H$$
 N
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

6-Hydroxydopamine (6-OHDA) is a neurotoxin widely used in experimental studies on the pathogenesis of PD. Furthermore, the reported presence of 6-OHDA in both human brain [24] and urine of parkinsonian patients [25] has led to consider this substance as a putative neurotoxic factor in relation to PD [26,27]. As is well-known, under physiological conditions 6-OHDA is rapidly oxidized by molecular oxygen to give hydrogen peroxide (H₂O₂) and the corresponding p-quinone. The p-quinone then undergoes a cascade of oxidative reactions which finally results in the formation of an insoluble polymeric pigment related to neuromelanin [28,29]. Evidently, the H₂O₂ resulting from the autoxidation of 6-OHDA may generate hydroxyl radicals (OH) through a metal-catalyzed Fenton-type reaction. Although the precise molecular mechanism of neurotoxicity of 6-OHDA remains uncertain, its neurotoxicity has been often related to the oxidative stress caused by the production of *OH during its autoxidation [30–34]. However, its has also been reported that 6-OHDA can act directly by inhibiting the mitochondrial respiratory chain at the level of complex I [35,36]. The stereotaxic injection of 6-OHDA into the medial forebrain bundle or substantia nigra has been long used to produce animal models of PD [37]. However, this standard model gives rise to a complete or almost complete destruction of the nigral

dopaminergic neurons and their terminals in the striatum, and has limited utility for studies on neuroprotection in the nigrostriatal system. More recently, it has been demonstrated that "partial lesion models" are more useful for research on neuroprotection and neurotoxicity in PD. These models are based on small intrastriatal injections of 6-OHDA that produce the degeneration of nigrostriatal terminals in a reduced striatal area, in which a druginduced increase or decrease of the 6-OHDA-derived lesion is easily detectable [38,39], or on small intraventricular injections of 6-OHDA that produce partial and bilateral degeneration of nigrostriatal terminals [40].

Thus, the aim of this study was double. Firstly, we carried out an *in vitro* study in which we investigated the effects of NIC and COT on the generation of *OH during 6-OHDA autoxidation and their actions on the stress oxidative caused by this neurotoxin using mitochondrial preparations obtained from rat brain. In addition, and in view of the suggested ability of NIC to bind iron [41–43], the effect of both compounds on the Fenton reaction was also investigated. Secondly, we investigated *in vivo* the possible neuroprotective effect against 6-OHDA-induced damage of the nigrostriatal system using the two abovementioned animal models of PD.

2. Materials and methods

2.1. Chemicals and reagents

(-)-Nicotine hydrogen tartrate salt, (-)-cotinine, hydrogen peroxide 30% (w/w), 6-hydroxydopamine hydrobromide, ascorbate (Asc), catalase (CAT), butylated hydroxytoluene crystalline, deferoxamine mesylate, thiobarbituric acid, 1,1,3,3-tetraethoxypropane, sodium dodecylsulfate, Triton X-100, 3,3'-diaminobenzidine, and bovine serum albumin were obtained from Sigma Chemical Co. Ferrous chloride tetrahydrate were purchased from Fluka Chemie AG. Terephthalic acid, disodium salt, was purchased from Aldrich Chemical Co. (Steinheim, Germany). Biotinylated secondary antibody and avidin-biotin-peroxidase complex were obtained from Vector. Normal swine serum was from DAKO (Glostrup, Denmark) and rabbit polyclonal antiserum against tyrosine hydroxylase was from Pel-Freez. The water used for the preparation of solutions was of Milli-RiOs/Q-A10 grade (Millipore Corp.). All remaining chemicals utilized were of analytical grade and were from Fluka Chemie AG. Stock solutions of 6-OHDA were prepared in 1 mM KCl (pH 2) to prevent its autoxidation [44]. Fresh stock solutions of iron were prepared in water immediately before each experiment.

2.2. Preparation of brain mitochondria

Male Sprague–Dawley rats weighing 200–250 g were used. The rats were received from the breeder at least 4

days before sacrifice, and were kept on a 12:12 light-dark schedule with ad libitum access to food and water. Animals were stunned with carbon dioxide and killed by decapitation. Brains were immediately removed and washed in icecold isolation medium (Na₂PO₄/KH₂PO₄ isotonized with sucrose, pH 7.4). Brain mitochondrias were then obtained by differential centrifugation with minor modifications to a previously published method [21]. Briefly, after removing blood vessels and pial membranes, the brains were manually homogenized with 4 vol (w/v) of the isolation medium. Then, the homogenate was centrifuged at 900 g for 5 min at 4° . The supernatant was centrifuged at 12,500 g for 15 min. The mitochondria pellet was then washed once with isolation medium and recentrifuged under the same conditions. Finally, the mitochondrial pellet was reconstituted in a buffer solution (Na₂PO₄/KH₂PO₄ isotonized with KCl, pH 7.4) and stored in aliquots at -40° .

The protein concentration of mitochondrial suspension was determined according to the method of Markwell *et al.* [45], using bovine serum albumin as the standard.

2.3. Determination of *OH production

The generation of *OH was fluorimetrically monitored using a modification to the method of Barreto et al. [46] in which THA is used as a chemical dosimeter of *OH. A luminiscence spectrometer Model LS50B (Perkin-Elmer) was used. The cuvette holder was thermostatically maintained at 37° and a magnetic stirrer was used for a continuous mixing of the sample. For *OH production during 6-OHDA autoxidation, 2000 µL of 25 mM phosphate buffer (pH 7.4) containing THA (10 mM) and an aliquot of 25 mM phosphate buffer (pH 7.4) to take the final volume of the incubation to 2.5 mL were incubated in a quartz cuvette for 5 min to reach the temperature. Then, 100 µL of NIC or COT (80 µM) and 20 µL of 6-OHDA (10 µM) were added. In some experiments, 100 µL of Asc (200 µM) were incorporated to the incubation previously to the addition of 6-OHDA. Concentrations of NIC, COT, Asc, and 6-OHDA are final concentrations in the incubation. The monitoring of OH formation was immediately initiated and maintained for the subsequent 10 min. Wavelengths of 312 and 426 nm were used for excitation and emission, respectively.

For ${}^{\bullet}\text{OH}$ generation from H_2O_2 in the presence of Fe²⁺ by the Fenton reaction, 2000 μL of 25 mM phosphate buffer (pH 7.4) containing THA (10 mM) and an aliquot of 25 mM phosphate buffer (pH 7.4) to take the final volume of the incubation to 2.5 mL were incubated for 5 min to reach the temperature (37°). Prior to this incubation, 100 μL of NIC or COT (320 μM) were also added to investigate the effects of these compounds on the Fenton reaction. Then, 20 μL of H_2O_2 (2 μM) were added and the recording initiated immediately. After 60 s, 20 μL of Fe²⁺ (3.2 μM) were added and the recording maintained for another 120 s. Also several incubations were carried out in

which NIC or COT were incubated with Fe^{2+} and H_2O_2 added subsequently. Concentrations of H_2O_2 , Fe^{2+} , NIC, and COT are final concentrations in the incubation. The instrumental conditions used were those reported above.

2.4. Determination of O_2 consumption and H_2O_2 accumulation

The O₂ consumption during 6-OHDA autoxidation was monitored polarographically according to a previously published method [34]. A Clark-type O₂-electrode (Digital Oxygen System Model 10, Rank Brothers) equipped with an amplifier, an A/D converter and the appropriate software for data acquisition and control [47] were used. The electrode was assembled in a 5-mL chamber surrounded by a thermostatic water jacket set at 37°. A polarizing voltage of +0.60 V was used. For each assay, 2380 μL of 25 mM phosphate buffer (pH 7.4) and 100 μL of NIC or COT (3.2 mM) were incubated in the electrode chamber for 5 min in order to reach the temperature and the saturating O₂ concentration. Then, 20 μL of 6-OHDA (400 μM) was injected using a Hamilton syringe (Model 702SNR). In some experiments, 2380 µL of 25 mM phosphate buffer (pH 7.4) containing Asc (8 mM) were used. Concentrations of NIC, COT, Asc, and 6-OHDA are final concentrations in the incubation. The solution in the electrode chamber was maintained continuously under vigorous stirring by a magnetic agitator. The accumulation of H₂O₂ was estimated from the production of O₂ after the addition of 25 µL of a CAT solution (2000 units). For O₂electrode calibration, the saturating O₂ concentration was taken as 237 µM and the zero was established in the presence of sodium dithionite [48].

For assess on the potential O_2 -consumption during the Fenton reaction, 2460 μ L of 25 mM phosphate buffer (pH 7.4) were incubated with 20 μ L H_2O_2 (200 μ M) during 5 min to reach equilibrium. Then, 20 μ L of Fe^{2+} (320 μ M) were injected using a Hamilton syringe. Two thousand units of CAT were then added to estimate the presence of H_2O_2 . In order to investigate the potential effects of NIC and COT on the Fenton reaction, 100 μ L of each of this compounds (3.2 mM) were incubated with 2360 μ L of phosphate buffer and 20 μ L H_2O_2 prior to the addition of Fe^{2+} . They have been also made incubations of NIC-(COT) with Fe^{2+} previous to the addition of H_2O_2 . The instrumental conditions used were the above reported.

2.5. Determination of TBARS

Lipid peroxidation was assessed by spectrophotometrical determination of TBARS. A modification to a previous published method [49] was used as TBARS assay. To 200 μ L of mitochondria preparation (1 mg protein/mL), 25 μ L of NIC or COT at a concentration 320 μ M or phosphate buffer (pH 7.4) were added followed by 25 μ L of 6-OHDA (10 μ M). In some experiments, 50 μ L

of Asc (100 µM) were incorporated previously to the addition of 6-OHDA. The resulting mixture was incubated at 37° for exactly 10 min. Immediately, 25 μL of butylated hydroxytoluene (1 mM) and 25 µL desferrioxamine (1 mM) were added to prevent the amplification of the lipid peroxidation during the assay. A volume of 750 μL of acetic acid (20%) followed by 200 µL of sodium dodecylsulfate (8%, w/v) were added and the mixture vortexed for 1 min. Then, 750 μL of TBA (0.8%) were added and the resulting mixture incubated at 95° for 60 min. After cooling to room temperature, 3 mL of n-butanol were added and the mixture shaken vigorously. After centrifugation at 2.600 g for 5 min, the absorbence of the supernatant (organic layer) was measured at 532 nm using an Ultrospec III spectrophotometer (Pharmacia Biotech). For calibration, a standard curve (5-150 nM) was generated using the malondialdehyde derived by the acid hydrolysis (SO₄H₂; 1.5%, v/v) of 1,1,3,3-tetramethoypropane and the TBARS results expressed as nmol MDA/mg protein.

2.6. Animal treatment

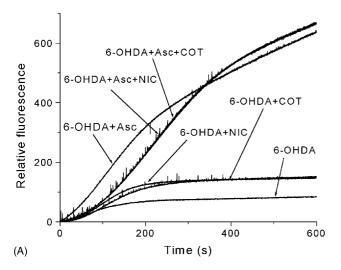
A total of 36 adult female Sprague–Dawley rats (weighing about 200 g) were used. All experiments were carried out in accordance with the "Principles of laboratory animal care" (NIH Publication no. 86-23, revised 1985). The rats were divided into five groups (A-E). Rats in group A (N = 4) were used as normal (i.e. non-lesioned) controls. Rats in groups B (N = 9) and C (N = 10) were injected in the right striatum with 6 μ g of 6-OHDA in 2 μ L of sterile saline containing 0.2% of ascorbic acid. Rats in groups D (N = 6) and E (N = 7) were injected in the third ventricle with 300 μg of 6-OHDA in 10 μL of sterile saline containing 0.2% of ascorbic acid. However, rats in groups C and E were injected intraperitoneally with NIC (1 mg/kg) 48, 24 and 4 hr before, and 4, 24, 48 and 72 hr after 6-OHDA injection. Stereotaxic coordinates were 1.0 mm anterior to bregma, 2.7 mm right of midline, 5.5 mm ventral to the dura, and tooth bar at -3.3 for intrastriatal injections, and 0.8 mm posterior to bregma, midline, 6.5 mm ventral to the dura, and tooth bar at 0 for injections in the third ventricle. The solution was injected with a 5 µL (intrastriatal injections) or 10 µL (intraventricular) Hamilton syringe coupled to a motorized injector (Stoelting), at 0.1 µL/ min (intrastriatal injections) or 0.5 µL/min (intraventricular injections) and the cannula was left in situ for 5 min after injection. All surgery was performed under equithesin anesthesia (3 mL/kg, i.p.).

2.7. Immunohistochemistry

One week post-lesion (groups B–E), the animals were deeply anaesthetized with chloral hydrate and perfused first with 0.9% saline and then with cold 4% paraformal-dehyde in 0.1 M phosphate buffer, pH 7.4. The brains were removed and subsequently washed and cryoprotected in

the same buffer containing 20% sucrose, and finally cut on a freezing microtome. Sections were processed TH-immuno-histochemistry (as follows). After incubation for 1 hr in 10% normal swine serum with 0.25% Triton X-100 in 0.02 M potassium phosphate-buffered saline containing 1% bovine serum albumin (KPBS-BSA), sections were incubated overnight at room temperature with rabbit polyclonal antiserum to tyrosine hydroxylase (TH) (1:500 in KPBS-BSA containing 2% normal swine serum and 0.25% Triton X-100). The sections were subsequently incubated first for 90 min with the corresponding biotinylated secondary antibody (diluted 1:200) and then for 90 min with an avidin–biotin–peroxidase complex. Finally, the labeling was visualized with 0.04% H₂O₂ and 0.05% 3,3'-diaminobenzidine.

TH-immunohistochemistry was quantified with the aid of NIH-Image 1.55 image analysis software (Wayne Rasband, MIMH) on a personal computer coupled to a videocamera CCD-72 (Maryland Telecommunications) and a constant illumination light table (Northern Light). In groups B and C (i.e. intrastriatal injections), the THnegative area (i.e. complete loss of dopaminergic terminals) surrounding the injection site was measured in sections containing the needle track (i.e. the center of the lesion). In groups D and E (i.e. intraventricular injections) and controls (group A), the density of striatal dopaminergic terminals was estimated as optical density of the striatal TH-immunoreactivity. At least four sections through the central striatum of each rat were measured (both the right and left striatum), and for each section optical densities were corrected by subtraction of background as observed in the corpus callosum.


2.8. Statistical analysis

Data are expressed as means \pm SEM. Differences between means were statistically evaluated using the one-way ANOVA followed by the Dunnett's test. Statistical differences in immunohistochemical data were tested using ANOVA followed by post-hoc Tukey's test. Normality of populations and homogeneity of variances was tested before each ANOVA. The accepted level of significance in all cases was P < 0.05.

3. Results

3.1. In vitro experiments

The production of *OH during 6-OHDA autoxidation was followed fluorimetrically using THA as a chemical dosimeter. The maximal relative fluorescence ($\Delta F_{\rm max}$) after 10 min of reaction was used as a parameter indicative of *OH production. As shown in Fig. 1A, the result of this study showed that *OH production during 6-OHDA (10 μ M) autoxidation only take place within the first 2 min of reaction and according to an hyperbolic kinetics.

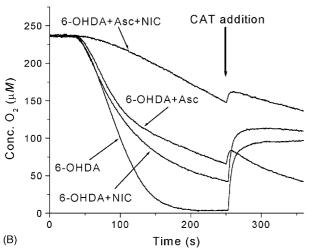


Fig. 1. Representative recordings of: (A) the effects of NIC and COT on $^{\bullet}\text{OH}$ generation during 6-OHDA autoxidation in the absence and presence of Asc. Incubations were carried out in 25 mM phosphate buffer (pH 7.4) at 37°, in the following order of addition: 80 μ M NIC or COT, 200 μ M Asc, and 10 μ M 6-OHDA. The $^{\bullet}\text{OH}$ formation is indicated by the fluorescence detected using THA as a chemical dosimeter; (B) the effects of NIC on O_2 consumption and H_2O_2 accumulation during 6-OHDA autoxidation in the absence and presence of Asc. The H_2O_2 accumulated after 216 s of reaction was assessed by the addition of 2000 units of CAT. Incubations were carried out in 25 mM phosphate buffer (pH 7.4) at 25°, using the following order of addition: 3.2 mM NIC or COT, 8 mM Asc, and 400 μ M 6-OHDA.

The presence of NIC and COT at a concentration $80 \,\mu\text{M}$ induced an augmentation in the production of ${}^{\bullet}\text{OH}$ during 6-OHDA autoxidation of 82 and 74%, respectively (Table 1). As illustrated in Fig. 1B, the presence of NIC (3.2 mM) during 6-OHDA (400 μM) caused a significant reduction in both O_2 consumption and H_2O_2 accumulation after 216 s of reaction. Similar effects were observed with COT at the same concentration (Table 1). It is necessary to note that different concentrations of reagents were used in fluorimetric and polarographic assays for an optimal sensitivity of each method. However, the same relationship between concentrations was maintained for statistical comparison of the results obtained with both techniques.

Table 1 Effects of the presence of NIC and COT on the production of ${}^{\bullet}OH$ and in the accumulation of H_2O_2 during 6-OHDA autoxidation in the presence and absence of ascorbate

Incubation $\Delta F_{\text{max}}^{\text{a}}$ H ₂ O ₂ (nmc	
6-OHDA 83.8 ± 5.5 459 ± 8.8	
6-OHDA + NIC $152 \pm 8.3^{\circ}$ $349 \pm 7.4^{\circ}$	c
6-OHDA + COT $147 \pm 6.3^{\circ}$ $379 \pm 10.0^{\circ}$.5°
6-OHDA + Asc 640 ± 13.5 36.0 ± 1.8	
6-OHDA + Asc + NIC 668 ± 8.9^{d} 68.5 ± 3.5	d
6-OHDA + Asc + COT 665 ± 4.4^{d} 64.1 ± 4.3	d

Values are means \pm SEM from four independent experiments.

^a The value of the relative fluorescence after 10 min of reaction was used to assess the production of ${}^{\bullet}$ OH. Incubations were carried out in 25 mM phosphate buffer (pH 7.4) at 37° and the concentration of reagents was as follows: NIC and COT, 80 μM; Asc, 200 μM; 6-OHDA, 10 μM.

^b Incubations were carried out in 25 mM phosphate buffer (pH 7.5) at 25°, 2000 units of CAT were added after 216 s of reaction, and the concentration of reagents was as follows: NIC and COT, 3.2 mM; Asc, 8 mM; 6-OHDA, 400 uM.

 $^{\rm c}$ Statistical significance at P < 0.05 (one-way ANOVA and Dunnett's test) in comparison with 6-OHDA group (control).

^d Statistical significance at P < 0.05 (one-way ANOVA and Dunnett's test) in comparison with 6-OHDA + Asc group (control).

As shown in Fig. 1A, the presence of Asc (200 μ M) during 6-OHDA autoxidation maintained the production ${}^{\bullet}$ OH during all the recording time. Furthermore, a continuous production of ${}^{\bullet}$ OH was observed for at least 30 min (data not shown). In this case, the presence of NIC or COT caused a diminution in ${}^{\bullet}$ OH production within the first minutes of reaction. However, this lessening was then followed by a slight increase (4%) in ${}^{\bullet}$ OH production (Table 1). The presence of Asc (8 mM) induced a slight reduction in O₂ consumption during 6-OHDA autoxidation (Fig. 1B), which also was followed by a reduction in the H_2O_2 accumulated after 216 s of reaction (Table 1).

In order to estimate the potential effect of NIC and COT on the Fenton reaction, we registered fluorimetrically the production of •OH after the addition of Fe²⁺ (3.2 µM) to H₂O₂ (2 μM). As illustrated in Fig. 2A, this experiment corroborated a very fast rate for OH production by the Fenton reaction. The incubation of NIC and COT at a concentration 320 µM with H₂O₂ previous to the addition of Fe²⁺ caused a rise in the production of •OH equivalent to 57 and 53%, respectively (Table 1). As shown in Fig. 2B, this effect was accompanied by a significant consumption of O₂ from the incubation medium without exhibiting accumulation of H₂O₂. However, the incubation of NIC and COT with \mbox{Fe}^{2+} previous to the incorporation of $\mbox{H}_2\mbox{O}_2$ to the incubation displayed a negligible production of *OH (Fig. 2A). In this case, neither O₂ consumption nor H₂O₂ accumulation was observed (Fig. 2B).

As shown in Fig. 3, the analysis of the presence of TBARS in mitochondria preparations after 10 min of 6-OHDA (10 μ M) autoxidation revealed that lipid peroxidation occurred in a significant proportion. Under these experimental conditions, the presence of NIC and COT caused a significant diminution in TBARS production. As

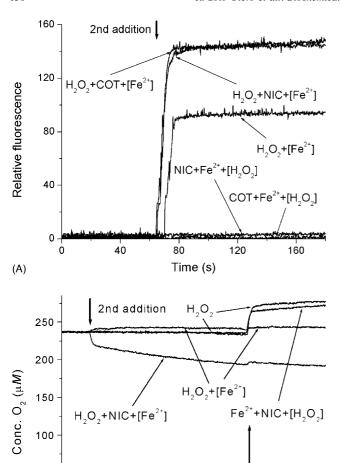


Fig. 2. Representative recordings of: (A) the effects of NIC and COT on $^{\bullet}OH$ generation by Fenton reaction. Incubations were carried out in 25 mM phosphate buffer (pH 7.4) at 37°, using 320 μM NIC or COT, 3.2 mM Fe²+, and 2 μM H₂O₂. The $^{\bullet}OH$ formation is indicated by the fluorescence detected using THA as a chemical dosimeter; (B) the effects of NIC on O₂ consumption and H₂O₂ accumulation in the Fenton reaction. The H₂O₂ accumulated after 216 s of reaction was assessed by the addition of 2000 units of CAT. Incubations were carried out in 25 mM phosphate buffer (pH 7.4) at 25°, using 3.2 mM NIC or COT, 32 μM Fe²+, and 200 μM H₂O₂. Reagents were added in order of their appearance in the figure and those represented between brackets were added at the time indicated as 2nd addition.

100

CAT addition

300

200

Time (s)

expected, the presence of Asc (100 $\mu M)$ markedly stressed the production of TBARS during 6-OHDA autoxidation (Fig. 3). In this case, the presence of NIC or COT in combination with Asc caused a greater reduction in TBARS formation (48% with NIC and 23% with COT) during 6-OHDA autoxidation when compared to the results obtained with incubations containing Asc + 6-OHDA.

3.2. In vivo experiments

50

0

(B)

As shown in Fig. 4, control rats (i.e. not injected with 6-OHDA; group A) showed a dense and evenly distributed

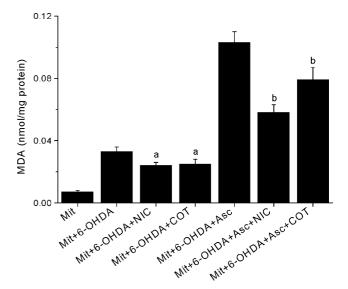


Fig. 3. Effects of NIC and COT in the absence and presence of Asc on the lipid peroxidation induced by 6-OHDA autoxidation on mitochondria preparations from rat brain. The lipid peroxidation was assessed by the formation of TBARS. Mitochondria incubations (1 mg protein/mL) were performed at 37° for 10 min, using the following concentration of reagents and order of addition: NIC and COT, 80 μ M; Asc, 200 μ M, and 6-OHDA. Data are means \pm SEM from four independent experiments. Statistical significance at P<0.05 (one-way ANOVA and Dunnett's test): a, in comparison with Mit + 6-OHDA group (control); b, in comparison with Mit + 6-OHDA + Asc group (control).

TH-immunoreactivity through the striatum, which indicated the presence of a dense network of nigrostriatal dopaminergic terminals. Rats subjected to intrastriatal injection of 6-OHDA (groups B and C) showed a circumscribed TH-negative area surrounding the injection site that indicated a complete loss of dopaminergic terminals. As illustrated in Fig. 5, the TH-negative area of rats treated with NIC (group C) appeared slightly less (2.65 \pm 0.18 mm²) than the TH-negative area of non-treated rats (group B; $3.16\pm0.25~\text{mm}^2$). However, the difference was not statistically significant.

Rats subjected to intraventricular injection of 6-OHDA (groups D and E) showed an extensive and even decrease of TH-immunoreactivity through both striata (Fig. 4). However, striatal TH-immunoreactivity of rats treated with NIC (group E) was clearly higher (around 61% of the control group) than that of non-treated rats (group D; around 24% of the control group), and this difference was statistically significant (Fig. 5).

4. Discussion

In the first stage, this study has examined the potential mechanisms by which NIC and COT may affect the oxidative stress caused by the autoxidation of 6-OHDA. Thus, it has been observed that the autoxidation of 6-OHDA generates a limited production of •OH. However, this production is enhanced by the presence of Asc, which

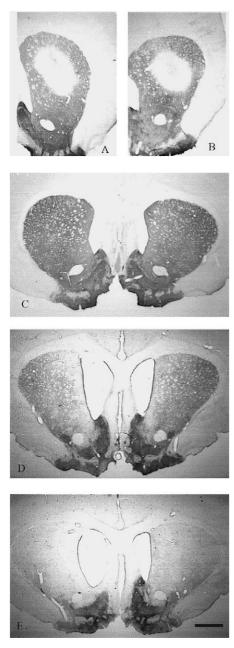


Fig. 4. Microphotographs showing the TH-immunoreactivity in the striata of rats from the different experimental groups. (A and B): sections from the right (i.e. injected) striatum of rats that received an intrastriatal injection of 6-OHDA and were not treated (A) or treated (B) with NIC. Note a clear loss (white) of TH (i.e. dopaminergic terminals, gray) in the striatal area surrounding the injection site. (C–E): sections showing both striata of normal rats (C, controls), and rats injected with 6-OHDA in the third ventricle and treated (D) or non-treated (E) with nicotine. TH-immunoreactivity (i.e. spared dopaminergic fibers) is clearly higher in the treated group (D) than in rats that did not receive NIC (E). Scale bar = 1 mm.

maintained the production of *OH due to a redox cycling, as it has been previously postulated [34]. Evidently, this fact helps explain the reported neurotoxicity of 6-OHDA in the presence of Asc because, as is well-known, 6-OHDA solutions for *in vivo* experiments are always prepared in Asc (2%) in order to confer stability to 6-OHDA. Under the here reported experimental conditions, the addition of NIC

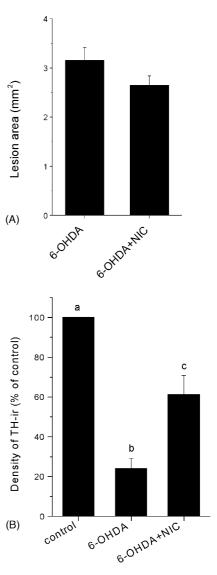


Fig. 5. (A) TH-negative area (i.e. complete loss of dopaminergic terminals; mm²) surrounding the injection site in rats from groups B and C. The values obtained from rats treated with NIC (group C) were slightly lower than those from untreated rats, but it did not reach statistical significance. (B) Density of TH-immunoreactive (TH-ir) fibers (i.e. striatal dopaminergic terminals) in normal rats (control, group A) and in rats subjected to injection of 6-OHDA in the third ventricle and non-treated (group D) or treated (group E) with NIC. The density of TH-positive fibers (i.e. spared dopaminergic fibers) was significantly higher in the treated group. Data are mean \pm SEM. Means that differ significantly are indicated by a different letter (one-way ANOVA followed by post-hoc Tukey's test; P<0.05).

or COT increased the production of *OH during 6-OHDA autoxidation. Furthermore, when the autoxidation of 6-OHDA takes place in the presence of Asc, both NIC and COT also caused an augmentation in *OH production. Evidently, these results seem to rule out the direct participation of NIC or COT as scavengers of *OH during the autoxidation of 6-OHDA. Taking into account that both O₂-consumption and H₂O₂-accumulation are reduced in the presence of NIC and COT, we hypothesized the participation of NIC and COT as a catalyst in a process involving H₂O₂ and a compound which only is present

at the beginning of the autoxidation. The major candidate appears to be the reaction proposed by Gee and Davison [29] for 6-OHDA autoxidation:

in which 6-OHDA (QH₂) reacts with the H_2O_2 previously formed in the autoxidation to yield the semiquinone radical (${}^{\bullet}$ sQ) and ${}^{\bullet}$ OH. Evidently, the acceleration of the abovementioned reaction might reduce the O_2 consumption main initial reaction of 6-OHDA autoxidation:

$$QH_2 + O_2 \rightarrow pQ + H_2O_2$$

Furthermore, the fast transformation of QH_2 into pQ explain why the generation of ${}^{\bullet}OH$ only takes place within the first minutes of reaction. This behavior is different in the presence of Asc due to the redox cycling induced by this compound.

We were also able to confirm that the incubation of NIC or COT with H_2O_2 followed by the addition of Fe^{2+} enhances greatly the formation of ${}^{\bullet}OH$. In view that all the H_2O_2 is consumed by the Fenton reaction (Fig. 2B), we postulated the increase in ${}^{\bullet}OH$ production is a consequence of its generation from O_2 by the following reactions:

$$O_2 + Fe^{2+} \overset{\text{NIC(COT)}}{\rightarrow} O_2^{\bullet -} + Fe^{3+}$$

$$2O_2^{\bullet -} + 4H^+ \rightarrow 2H_2O_2$$

$$H_2O_2 + Fe^{2+} \rightarrow {}^{\bullet}OH + OH^- + Fe^{3+}$$

This hypothesis is corroborated by the consumption of O_2 without accumulation of H_2O_2 observed under the reported conditions (Fig. 2B). Evidently, further studies are necessary to understand the molecular mechanism of this catalysis. The ferric iron formed in this process may be regenerated by the reaction:

$$Fe^{3+} + H_2O_2 \to Fe^{2+} + O_2^{\bullet-} + 2H^+$$

In contrast, the simultaneous incubation of Fe^{2+} and NIC or COT previously to the addition of H_2O_2 caused a negligible formation of ${}^{\bullet}OH$. In this case, we were able to prove a negligible consumption of H_2O_2 , a fact which demonstrates that under these circumstances both NIC and COT act by blocking the Fenton reaction. In our opinion, these findings are a consequence of the suggested capacity of NIC to chelate Fe^{2+} [11]:

This hypothesis is also corroborated by the activity shown by other iron-chelators to block the Fenton reaction [50,51]. Furthermore, our results are also supported by the antioxidant properties reported for NIC in relation to the formation of 6-OHDA from dopamine with the mediation of the Fenton reaction [14].

Taking into account that the here reported experimental protocol involved the incubation of both NIC and COT previous to the addition of 6-OHDA, the enhancement observed in the production of *OH during the autoxidation of 6-OHDA appears to discard the suggested involvement of traces of iron as a catalyst in the generation of *OH by 6-OHDA autoxidation [52].

Both NIC and COT protect against the lipid peroxidation induced by 6-OHDA on mitochondrial preparations obtained from rat brain as assessed by the reduction observed in TBARS formation. Furthermore, these protective effects are also present to a greater extent when the autoxidation of 6-OHDA takes place in the presence of Asc. Evidently, these effects are not attributable to the antioxidant properties shown by NIC and COT on the Fenton reaction because the production of *OH during 6-OHDA autoxidation is not related to the presence of iron.

Assuming that lipid peroxidation is initiated by removing of a hydrogen from a polyunsaturated fatty acid side chain in a membrane phospholipid (LH) to give a lipid radical (L•) which propagate the reaction as follows [53]:

$$LH + {}^{\bullet}OH \to L^{\bullet} + H_2O$$

$$L^{\bullet} + O_2 \rightarrow L \text{-} O_2{}^{\bullet}$$

$$L-O_2^{\bullet} + LH \rightarrow L-O_2H + L^{\bullet}$$

our results appear to show that NIC and COT act as chainbreaking antioxidant inhibitors of lipid peroxidation:

$$NIC(COT) + L-O_2^{\bullet} \rightarrow NIC^{\bullet}(COT^{\bullet}) + L-O_2H$$

which stops the amplification of lipid peroxidation. Furthermore, the greater protection observed with NIC and COT in the presence of Asc are probably a consequence of the antioxidant properties of Asc [54]:

$$Asc-H + NIC^{\bullet}(COT^{\bullet}) \rightarrow Asc^{\bullet} + NIC(COT)$$

$$2Asc^{\bullet} \rightarrow Asc-H + DHAsc$$

Evidently, these results contribute to explain the previously reported neuroprotective effects of NIC against the lesion induces by intranigral injection of 6-OHDA to rats [19].

Taking into account the suggested involvement of oxidative stress in the pathogenesis of PD [55], the here reported results clearly confers neuroprotective properties to both NIC and COT. Thus, assuming the suggested role of 6-OHDA as an etiologic factor in PD [27] and that both NIC and COT are able to reduce the lipid peroxidation

provoked by 6-OHDA autoxidation, probably due to their action as a chain-breaking antioxidant inhibitor of lipid peroxidation, this effect represents an important neuroprotective mechanism in relation to this disorder. In addition, it has been demonstrated that both NIC and COT are able to prevent the production of OH by the Fenton reaction, a fact which is very probably a consequence of their capacity to chelate Fe²⁺. Clearly, the importance of this effect is enhanced by the fact that dopaminergic neurons are rich in iron and the concentration of this metal is increased in PD patients [56–58]. It is necessary to note that the effect observed with NIC on the lipid peroxidation induced by 6-OHDA autoxidation is greater than that caused by COT, while the effect provoked on the Fenton reaction is similar with both NIC and COT. This fact confirms that the mechanism of these two actions is different, being the difference with regard to lipid peroxidation very probably related with a different reactivity for both compounds.

Recent in vivo studies which addressed the protective effect of NIC against 6-OHDA or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) have reported controversial results [13,17–19]. These discrepancies have been usually related to differences in doses and administration schedules, with low and intermittent doses (i.e. those used in the present study) being more effective than high and chronic doses. In addition, possible mechanical damage after direct administration of 6-OHDA into the substantia nigra or the medial forebrain bundle, or administration of too high doses of neurotoxin could prevent the observation of the protective effects of NIC in some of the abovementioned studies. In the present study, we have used the same NIC doses and administration schedule in two recent and different animal models of PD that have been shown to be particularly appropriate for studies on neurotoxicity and neuroprotection [38-40]. However, only with one model (i.e. injection of 6-OHDA into the third ventricle) were we able to obtain clear morphological evidence of the neuroprotective effects of NIC against 6-OHDA in vivo. This neuroprotective effect is clearly supported by our in vitro results, showing a protective effect of both NIC and COT on lipid peroxidation and on OH production by the Fenton reaction. Of course, the difficulty in demonstrating the neuroprotective effects of NIC could also be related to the pro-oxidant properties observed for both NIC and COT in relation to the production of *OH during 6-OHDA autoxidation. Finally, regarding the reported protective effects of smoking against PD [6-10], the here reported protection of NIC and COT should be combined with the previously reported publications linking cigarette smoking to preventing the formation of certain dopaminergic neurotoxins [20–23], together with the possible effects of NIC on nicotinic-acetylcholine receptors [19,59] and neurotrophic factors [60,61], all of which contribute to a better understanding of this repeated finding of neuroprotection of smoking against PD.

Acknowledgments

This work was supported by Grants MP97-0033 (to R.S.-O.) and MP98-0226 (to J.L.L.-G.) from the Dirección General de Enseñanza Superior e Investigación Científica, Madrid, Spain.

References

- Greenfield JG, Bosanquet PD. The brainstem lesion in parkinsonism. J Neurol Neurosurg Psychiatr 1953;16:213–26.
- [2] Agid Y. Parkinson's disease: pathophysiology. Lancet 1991;337: 1321–4.
- [3] Schapira AH, Hartley A, Cleeter MW, Cooper JM. Free radicals and mitochondrial function in Parkinson's disease. Biochem Soc Trans 1993;21:367–70.
- [4] Berg D, Gerlach M, Youdim MBH, Zecca L, Riederer P, Becker G, Double KL. Brain iron pathways and their relevance to Parkinson's disease. J Neurochem 2001;79:225–36.
- [5] Youdim MB, Grünblatt E, Mandel S. The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson's disease with iron chelators. Ann NY Acad Sci 1999;890:7–25.
- [6] Nefzger MD, Quadfasel FA, Karl VC. A retrospective study of smoking in Parkinson's disease. Am J Epidemiol 1968;88:149–58.
- [7] Baron JA. Cigarette smoking and Parkinson's disease. Neurology 1986;36:1490–5.
- [8] Morens DM, Grandinetti A, Reed D, White LR, Ross GW. Cigarette smoking and protection from Parkinson's disease: false association or etiologic clue? Neurology 1995;45:1041–51.
- [9] Hellenbrand W, Seidler A, Robra B-P, Vieregge P, Oertel WH, Joerg J, Nischan P, Schneider E, Ulm G. Smoking and Parkinson's disease: a case–control study in Germany. Int J Epidemiol 1997;26:328–39.
- [10] Hernán MA, Zhang SM, Rueda-de-Castro AM, Colditz GA, Speizer FE, Ascherio A. Cigarette smoke and the incidence of Parkinson's in two prospective studies. Ann Neurol 2001;50:780–6.
- [11] Nakagima M, Yamamoto T, Nunoya K-I, Yokoi T, Nagashima K, Inoue K, Funae Y, Shimada N, Kamataki T, Kuroiwa Y. Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos 1996;24:1212—7.
- [12] Crooks PA, Li M, Dwoskin LP. Metabolites of nicotine in rat brain after peripheral nicotine administration: cotinine, nornicotine and norcotinine. Drug Metab Dispos 1999;25:47–54.
- [13] Ferger B, Spratt C, Earl CD, Teismann P, Oertel WH, Kuschinski K. Effects of nicotine on hydroxyl free radical formation *in vitro* and on MPTP-induced neurotoxicity *in vivo*. Naunyn-Schmiedeberg's Arch Pharmacol 1998;358:351–9.
- [14] Linert W, Bridge MH, Huber M, Bjugstad KB, Grossman S, Arendash GW. In vitro and in vivo studies investigating possible antioxidant actions of nicotine: relevance to Parkinson's and Alzheimer's diseases. Biochim Biophys Acta 1999;1454:143–52.
- [15] Wetscher GJ, Bagchi M, Bagchi D, Perdikis G, Hinder PR, Glaser K, Hinder RA. Free radical production in nicotine treated pancreatic tissue. Free Radic Biol Med 1995;18:877–82.
- [16] Yildiz D, Liu YS, Ercal N, Armstrong DW. Comparison of pure nicotine- and smokeless tobacco extract-induced toxicities and oxidative stress. Arch Environ Contam Toxicol 1999;37:434–9.
- [17] Behmand RA, Harik SI. Nicotine enhances 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine neurotoxicity. J Neurochem 1992;58:776–9.
- [18] Blum M, Wu G, Belluardo K, Anderson K, Agnati LF, Fuxe K. Chronic continue infusion of (-)-nicotine reduces basic fibroblast growth factor messenger RNA levels in the ventral midbrain of the intact but not the 6-hydroxydopamine-lesioned rat. Neuroscience 1996;70:169-77.

- [19] Costa G, Abin-Carriquiry JA, Dajas F. Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra. Brain Res 2001;888:336–42.
- [20] Soto-Otero R, Riguera-Vega R, Méndez-Álvarez E, Sánchez-Sellero I, López-Rivadulla Lamas M. Interaction of 1,2,3,4-tetrahydroisoquinoline with some components of cigarette smoke: potential implications for Parkinson's disease. Biochem Biophys Res Commun 1996;222: 607–11.
- [21] Méndez-Álvarez E, Soto-Otero R, Sánchez-Sellero I, López-Rivadulla Lamas M. Inhibition of brain monoamimo oxidase by adducts of 1,2,3,4-tetrahydroisoquinoline with components of cigarette smoke. Life Sci 1997:60:1719–27.
- [22] Soto-Otero R, Méndez-Álvarez E, Riguera-Vega R, Quiñoá-Cabanas E, Sánchez-Sellero I, López-Rivadulla Lamas M. Studies on the interaction of 1,2,3,4-tetrahydro-β-carboline and cigarette smoke: a potential mechanism of neuroprotection for Parkinson's disease. Brain Res 1998;802:155–62.
- [23] Soto-Otero R, Méndez-Álvarez E, Sánchez-Sellero I, Cruz-Landeira A, López-Rivadulla Lamas M. Reduction of rat brain levels of the endogenous dopaminergic proneurotoxins 1,2,3,4-tetrahydroisoquinoline and 1,2,3,4-tetrahydro-β-carboline by cigarette smoke. Neurosci Lett 2001;298:187–90.
- [24] Curtius HC, Wolhensberger M, Steinmann B, Redweik S. Mass fragmentography of dopamine and 6-OH-dopamine. Application to the determination of dopamine in human brain biopsies from the caudate nucleus. J Chromatogr 1974;99:529–40.
- [25] Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RKH. The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 1993;18:1175–7.
- [26] Irwin I, Langston JW. Endogenous toxins as potential etiologic agents in Parkinson's disease. In: Ellenberg JH, Koller WC, Langston JW, editors. Etiology of Parkinson's disease. New York: Marcel Dekker, 1995. p. 153–201.
- [27] Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MBH. Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson's disease. J Neural Trans 1995;46: 297–314.
- [28] Graham DG, Tiffany SM, Bell Jr WR, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 1978;14:644– 53
- [29] Gee P, Davison AJ. Intermediates in the aerobic autoxidation of 6hydroxydopamine: relative importance under different reaction conditions. Free Radic Biol Med 1989;6:271–84.
- [30] Cohen G, Heikkila RE, Allis B, Cabbat F, Demblec D, MacNamee D, Mytilineou C, Inston B. Destruction of sympathetic nerve terminals by 6-hydroxydopamine: protection by 1-phenyl-3-(2-thiazolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol and n-butanol. J Pharmacol Exp Ther 1976;199:336–52.
- [31] Cadet JL, Katz M, Jackson-Lewis V, Fahn S. Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 1989;476:10–5.
- [32] Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH. The iron chelator desferrioxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 1991;56:1441–4.
- [33] Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 1995;64:1703–7.
- [34] Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras Á, Muñoz-Patiño AM, Labandeira-García JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem 2000;74:1605–12.

- [35] Glinka YY, Youdim MBH. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 1995;292:329–32.
- [36] Glinka YY, Tipton KF, Youdim MBH. Nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine. J Neurochem 1996;66:2004–10.
- [37] Labandeira-García JL, Rozas G, Lopez-Martin E, Liste I, Guerra MJ. Time course of striatal changes induced by 6-hydroxydopamine lesion of the nigrostriatal pathway, as studied by combined evaluation of rotational behaviour and striatal Fos expression. Exp Brain Res 1996:108:69–84.
- [38] Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydro-xydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994;59:401–15.
- [39] Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Levis V, Donaldson D, Togasaki DM. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995;67:631–47.
- [40] Rodriguez M, Barroso-Chinea P, Abdala P, Obeso J, Gonzalez-Hernandez T. Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson's disease. Exp Neurol 2001;169:163–81.
- [41] Loh TT. The effects of derangement of cell membrane structure and inhibitors on transferrin and iron uptake by reticulocytes. Clin Exp Pharmacol Physiol 1982;9:11–20.
- [42] McArdle HJ, Tysoe J. Effect of nicotine on transferrin binding and iron uptake by cultured rat placenta. J Cell Physiol 1988;134:509–13.
- [43] Goerig M, Ullrich V, Schettler G, Foltis C, Habenicht A. A new role for nicotine: selective inhibition of thromboxane formation by direct interaction with thromboxane synthase in human promyelocytic leukaemia cells differentiating into macrophages. Clin Invest 1992; 70:239–43.
- [44] Sullivan SG, Stern A. Effects of superoxide dismutase and catalase on catalysis of 6-hydroxydopamine and 6-aminodopamine autoxidation by iron and ascorbate. Biochem Pharmacol 1981;30:2279–85.
- [45] Markwell MAK, Haas SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 1978;87:206–10.
- [46] Barreto JC, Smith GS, Strobel NHP, McQuillin PA, Miller T. Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci 1995;56:89–96.
- [47] Méndez-Álvarez E, Soto-Otero R, Sánchez-Sellero I, López-Rivadulla Lamas M. *In vitro* inhibition of catalase activity by cigarette smoke: relevance for oxidative stress. J Appl Toxicol 1998;18:443–8.
- [48] Cark JB. Electrochemical assay. In: Eisenthal R, Danson MJ, editors. Enzyme assays: a practical approach. Oxford: IRL Press, 1993. p. 181–90
- [49] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–8.
- [50] Kozlov AB, Ostrachovitch EA, Afanasev IB. Mechanism of inhibitory effects of chelating drugs on lipid peroxidation in rat brain homogenates. Biochem Pharmacol 1994;47:795–9.
- [51] Lopes GK, Schulman HM, Hermes-Lima M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1999;1472:142–52.
- [52] Bandy B, Davison AJ. Interaction between metals, ligands, and oxygen in the autoxidation of 6-hydroxydopamine: mechanisms by which metal chelation enhances inhibition by superoxide dismutase. Arch Biochem Biophys 1987;259:305–15.
- [53] Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984;219:1–4.
- [54] Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992;59:1609–23.
- [55] Jenner P, Olanow CW. Pathological evidence for oxidative stress in Parkinson's disease and related degenerative disorders. In: Olanow CW, Jenner P, Youdim M, editors. Neurodegeneration and

- neuroprotection in Parkinson's disease. London: Academic Press, 1996. p. 24-45.
- [56] Riederer P, Sofic E, Rausch W-D, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 1989;52: 515–20
- [57] Hirsch EC, Brandel J-P, Galle P, Javoy-Agid F, Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease and X-ray microanalysis. J Neurochem 1991; 56:446–51.
- [58] Berg D, Grote C, Rausch W-D, Mäurer M, Wesemann W, Riederer P, Becker G. Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 1999;25:901–4.
- [59] Ryan RE, Ross SA, Drago J, Loiacono RE. Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in α4 nicotinic receptor subunit knockout mice. Br J Pharmacol 2001;132:1650–6.
- [60] Belluardo N, Blum M, Mudo G, Andbjer B, Fuxe K. Acute intermitent nicotine treatment produces regional increases of basic fibroblast growth factor messenger RNA and protein in the tel- and diencephalon of the rat. Neuroscience 1998;83:723–40.
- [61] Maggio R, Riva M, Vaglini F, Fornai F, Molteni R, Armogida M, Racagni G, Corsini G. Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem 1998;71:2439–46.